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For my final project, I partnered with Anthony Cummings to develop a global-illumination 

renderer that uses the GPU for both the rendering and the global-illumination calculation.  The global 

illumination was done using photon maps.  The algorithm for photon map global illumination is 

typically divided into two passes.  In the first pass, photons are traced through the scene, originating at 

the light source, to get an approximation of the lighting for the scene.  In the second pass, called final-

gathering, rays are cast from the visible points of the scene into the photon map to get an 

approximation of the indirect light at each point.  Anthony was responsible for implementing the first 

pass, and I implemented the final-gather step.  Both passes were eventually implemented on the GPU. 

The first pass was implemented with a method similar to that described by Tim Purcell in a 2002 

Siggraph paper.  The second pass implementation was based on an article in GPU Gems 2, “High-

Quality Global Illumination Rendering Using Rasterization” by Toshiya Hachisuka. In this article, 

Toshiya describes a method that does the final gathering by casting rays from all visible points, one 

direction at a time rather than casting rays in all directions from each visible point at a time, as is done 

in typical ray-tracing methods.  The method uses rasterization and depth peeling to simulate casting a 

large set of parallel rays through the scene.  Because each pass adds one indirect lighting sample for 

each visible point, the user can watch the final gathering step converge as it is displayed on the screen.

In the GPU gems article, a finely tessellated mesh was used to store the photon map using 

vertex colors to store irradiance values.  For the implementation of our global illumination renderer, we 

decided to use a grid photon map.  Using a grid-based photon map can introduce more artifacts, and 

must be sampled with texture lookups, whereas a finely-tesselated mesh can simply be sampled by 



rasterization, however a grid photon map is much easier to construct, and can produce reasonable 

results.  

After the photon map is constructed, the scene is rendered once for direct lighting, and the result 

is stored in a texture.  Then, random directions are chosen for casting rays for the final-gather step.  The 

rays are cast through the scene by first setting up an orthographic view that encompasses the entire 

scene.  Then, layers of the scene are rendered back to front with several passes with depth-peeling. 

This is done by reversing the z-test so that only the farthest geometry is rendered.  The z-buffer from 

the previous pass must also be stored, so fragments as far or farther away than previously rendered 

layers are discarded.  After each depth-peeling pass, the scene is rendered from the eye's point of view, 

and the image rendered from the ray's point of view is projected into the scene in a way similar to what 

is done for shadow maps.  The ray-view coordinates are found for the visible point, and if the visible 

point's z-value in ray-space is  closer than the rendered point for the ray, ( i.e. the ray hits the visible 

point going from the rendered ray point ), then the color at the rendered ray point is added to the visible 

point in a buffer used for accumulating the ray's illumination in eye-space.  After iterating through all 

the layers of the scene, the buffer used for accumulation contains all the indirect lighting along a 

particular ray direction for the visible points of a scene.  In our implementation, this buffer is added to 

the accumulation buffer, and a counter for the number of final-gather samples is incremented.  To 

produce the final image, the indirect lighting information is drawn from the accumulation buffer, 

dividing by the number of samples used, and combined with the direct lighting pass that was stored 

earlier in a texture.  More details and diagrams on the final-gather step can be found in the GPU Gems 

article here: 

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter38.html

The advantage to doing photon mapping on the GPU is the ability to take advantage of the 

parallelism capabilities of the GPU, since both passes of the photon mapping algorithm can be 

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter38.html


parallelized fairly well.  The photon-tracing was implemented first on the CPU, and later on the GPU, 

and the speed difference between the two was apparent.  For the final-gather step, we did not have an 

alternate implementation that would give us an idea of speed advantages of implementing it on the 

GPU, however there are other advantages to doing final-gathering on the GPU as well.  Since it is 

incremental, the user can move through the scene and change the camera view, and once the view is 

still, the global-illumination will gradually gather more samples and converge, until the camera is 

moved again, thus giving a convenient way to move around a scene, and quickly get an idea of what 

the global illumination will look like.

We decided to use the Cornell box as our scene for testing.  An accurate global-illumination 

renderer should lighten the shadows, darken corners, and produce visible color bleeding from the 

colored walls onto the boxes.  We were able to achieve these effects with our renderer.  Sampling of 

the photon grid proved to be a challenge, however, and there are some visible artifacts that result from 

the sampling of the 3D texture photon map.  One current improvement that could be made is to develop 

better sampling techniques for sampling the grid photon map to reduce these artifacts.
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